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Connections are given between the theoretical n-electron theory in an ordinary atomic 
orbital basis and semiempirical theories in an orthogonalized basis, neglecting terms of third 
order. An expression is derived for a one-electron operator with the properties, usually assigned 
to the effective Hamiltonian of the I-I/ickel method. The non-local part of this operator is 
shown to give only small contributions also for heteromolecules and lone pairs. Not only 
short-range forces but also long-range forces, originating from the exchange operator, contri- 
bute essentially to the effective bonding. Numerical applications have been made e.g. to aniline 
and p-benzoquinone. 

Es wird der Zusammenhang zwischen einer reinen ~-Elektronentheorie mit Atomeigen- 
funktionen als Basis einerseits und semiempirischen Theorien mit orthogonaler Basis anderer- 
seits aufgezeigt, wobei Glieder dritter Ordnung in iJberlappungsintegralen vernaehli~ssigt 
werden. Dabei l~igt sich ein Einelektronenoperator mit den Eigenschaften, die fiir gewShnlich 
fiir den effektiven Hamiltonoperator der IIiickel-Theorie postuliert werden, finden. Sein 
nichtlokaler Anteil liefert nut geringe Beitr~ige fiir Heteroatome nnd einsame Elektronenpaare. 
Fiir die Bindung sind neben den Kr~ften des Austauschoperators mit kurzer Reiehweite aueh 
weitreiehende yon Bedeutung. Numerisehe Werte ffir Anilin und p-Benzochinon werden gege- 
ben. 

Des connections entre la m~thode th~orique des 61ectrons 7~ sur base d'orbitales atomiques 
ordinaires, et des th6ories semiempiriques sur une base orthogonalis6e sont donn6es, en nggli- 
geant les termes du troisi~me ordre. On d6rive une expression pour un op~rateur mono~lectro- 
nique ayant les propri~t6s attribuSes usuellement £ l'op6rateur hamiltonien effeetif de la m6- 
rhode de Itfickel. On montre que la pattie non-locale de cet op4rateur ne donne que de contri- 
butions petites, mgme pour les hgt6roatomes et les paires libres d'61eetrons. Non seulement les 
forces ~ port4e courte, mais aussi celles £ port6e longue d6rivant de l'op6rateur d'6change, 
contribuent essentiellement £ la liaison effective. Des applications num6riques, p.e. pour 
l'aniline et le p-benzoquinone, out 6t~ effeetu~es. 

I. Introduct ion and Summary 

For theoretical  studies of :z-electron systems it is possible to choose between 
several more or less semiempirical procedures. The following three will be con- 
sidered here: (i) the theoretical self-consistent-field (SCF) linear combinat ion  of 
atomic orbitals (LCAO) method,  (ii) the Pariser-Parr-Pople method,  (iii) the Hiickel 
method. The connections between these methods has been studied previously 
m a n y  times. Among the more recent articles, dealing with these problems, are the 
invest igat ions by  I~UE])ENB]~RG [17], DEL RE and PARE [1], McWEENY [7] and 
FISCtIER-HJALMARS [3]. Although, so far, m a n y  points  have been discussed and  
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clarified, several obscurities still remain, especially for the general case, where 
heteroatoms and lone pairs are present. The main source of these difficulties seems 
to be tha t  no operator with the properties, usually assigned to the effective 
Hamiltonian of the Hfickel method, has yet been deduced. Since this problem is 
essential for the understanding of the success of the Hiickel method, it will be 
t reated in the present paper together with some related questions. 

The considerations are based on the author 's  previous analysis of the zero 
differential overlap (ZDO) approximation by  means of an expansion method [3]. 
There it was demonstrated tha t  the Pariser-Parr-Pople method is equivMent to a 
systematic inclusion of second order terms of the overlap integral S, but neglect of 
higher order terms. Furthermore, the ttfickel method was shown to be essentially 
equivalent to a first order theory with respect to S. These results are utilized in the 
present study. After a brief review of the theoretical method in Section 2, the 
OAO basis in the second order approximation is introduced in Section 3. In  this 
approximation, the Foek operator F takes the form of Eq. (23) with the Coulomb 
and exchange operators defined in Eqs. (24) and (25). Then, the connection be- 
tween the Mulliken population analysis and the concepts of charge and bond 
order are discussed. I t  is pointed out that  the OAO's are more  localized than  the 
A0 ' s  [cf. Eqs. (26), (27)]. Thus, charge and bond order are meaningful concepts 
in the OAO basis. I t  is shown tha t  the gross atomic populations N~ z in the AO 
basis and the atomic charges P,,, in the OAO basis are identical in the second 
order approximation [Eq. (30)]. A relation between overlap populations n,,,, and 
bond orders P,~ is also given [Eq. (32)]. In  Section 4 an expression is derived for 
an effective one-electron t tamil touian operator H err [Eq. (36)], which can be 
interpreted as the Hfickel Hamiltouian. This operator has the property tha t  the 
sum over its eigenvalues will give the total  energy of the system, i.e. the sum of 
the ~-eleetron energy E = and the core repulsion energy Erep uls, of. Eq. (35). A 
comparison of the operators F and H e~f shows that  the non-local contributions to 
H elf will be an order of magnitude smaller than to F [ef. Tab. t]. Hence, an elec- 
tron in the potential from H e*f and close to a specific atom "sees" a potentiM well 
of substantial depth at this very atom but  the rest of the molecule as essentially 
neutral. Finally, the concept of effective bonding energy, introduced by  RUEDE~- 
]3]~G [17], is discussed and extended to heteronuc]ear molecules including lone 
pairs [Eq. (48)]. The importance of short-range forces, stressed by  lgV~DE~CBERG, 
is confirmed. However, it is shown tha t  also long-range interaction, originating 
from the exchange operator, is of considerable importance [cf. Tab. 2]. 

2. The Theoretical Method 

For simplicity the presentation here will be confined to closed-shell systems 
with 2n z-electrons. The 7~-electronie part  of the I-Iamiltonian is 

2 n  

H = ~ Hcore (~) + ~ l/rs~. (l) 
s=l s > u  

The eigenfunction of this operator is supposed to be an antisymmetrized product 
of molecular orbitals composed of atomic orbitals Z t (s). The AO %t is a Slater-type 
atomic 2pz  orbital centered on atom/~. Since we will have different basic orbitMs in 
the different methods the superscript t is introduced to distinguish the theoretical 
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method. Assuming that  there is just one AO Z~ on each center ,u we can write 
all a t oms  

Hcore,t = T + ~ (V~ - n~ J ~ ) .  /2) 

in  Eq. (2) T is the kinetic energy, (7, is the potential from the neutral atom and n. 
is the number of z-electrons contributed by  atom z (n~ = 0, i or 2). J ~  is the 
ordinary Coulomb operator, defined in terms of the AO's X~" 

Itl the LCAO approximation the space part  of the ith molecular orbital is 

/*=1_ 

where m is the number of atoms, contr ibuting ~-electrons. Z t is a row matr ix  and 
C~ a column matrix. Collecting all the n doubly filled orbitals into a row matr ix  
w e  h a v e  

q~ = Z t C t , (4) 

where C t is a rectangular m x n matrix. Introducing the orbital representation 
of the density matr ix  

pt = 2 C t (Ct) t (5) 

we can write the Fock operator of the one-electron problem 

where K ~  is the exchange operator with the usual definition. 
The electronic density, obtained after solution of the self-consistent-field 

problem, can be analysed according to the scheme developed by  MVLZIKE~ [10]. 

The net atomic populations n , ,  are given by the diagonal elements of the density 
matr ix  in Eq. (5): 

= p t  (7) 7~.u# /~f~ • 

According to Mulliken's definition the gross atomic populations ~V~,~ are 

where 
~, = ~ z~; z~ d~.  (9) 

As pointed out by GLAD~nY [4] the gross atomic populations are the diagonal 
elements of a matrix N 

N :: ½ (pt S -~ S pt) .  (10) 

The off-diagonal elements of this matr ix  are bond-order-like quantities [4]. How- 
ever, MVLLIKE~ [10] has pointed out that  the overlap populations n/,~ 

n,~ = 2 p t  S~., # # v, (i~) 

may have certain merits for the description of bonding properties in comparison 
to bond-order like quantities. 

3. The £ariser-Parr-Pople Method 

a)  The  Fock  operator in  an O A O  basis 

As is well known, the full SCF-LCAO-MO treatment  can be simplified in the 
way suggested by PAlClS~I~ and PAI~I~ [12] and POeLE [16]. These simplifications 
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can be / o rma l l y  described by the assumption of zero differential overlap. I t  has 
also been pointed out many times that  the correct interpretation of this simplifica- 
tion can be made along two different lines. The one includes a regrouping of terms 
and the introduction of the Mulliken approximation [8] in the complete MO expres- 
sion for the electronic repulsion. This interpretation was first given by  MVLLIK~ 
[9]. According to the other line, first pointed out by LOWDIIg [6], a change from 
the ordinary AO basis to an orthogonalized AO basis will lead to the simplifica- 
tions suggested by  the ZDO formalism. Both these interpretations are discussed 
in detail by  PAm¢ [14], where further references are given. The approximations 
inherent in the OAO interpretation have recently been analyzed by the present 
author by an expansion method [3]. As pointed out above, the Pariser-Parr-Pople 
scheme was shown to be equivalent to a second order t reatment in terms of S~,~+ 1, 
where the atome/~ and/z A- I are nearest neighbors. This implies that  the scheme 
can only be expe ?ted to give reasonable results when 

S . , . + 1  < 0.5. (1.2) 

This condition is fulfilled for most z-electron systems but m general not for a- 
electron systems. 

According to LSwnr~ [5] the orthogonalization transformation can be written 

Z = Z t S -  e , (13) 

where Z is the OAO set. Then the transformation of any one-electron operator M 
is given by 

1 1 

M = S -  ~ M~ S -  2 ,  (14) 

where M is the representation in the 0 A 0  basis. In the second order approxima- 
tion we can put [3] 

S = l + s a l + e  2 c 2 + 0 ( s  8). (15) 

The matrices al and c 2 are the overlap matrices between nearest and next-nearest 
neighbors respectively: 

(/~ l e a 1 Iv) = S . , . - 1  0+,-1,~ ÷ S.,~+~ d. +~,,~, (16) 

Then 
1 

s ~ = 1 + ½ ~ -1 + ~ (~ ~ - ~ a~) + o ( ~ ) ,  (~8) 
1 

S -  ~ = 1 --  ½ e a ~ - -  e ~ (½ c 2 - -  ~ a~) + O (ca). ( t9)  

In the OAO basis the MO's are 
1 

= X C =  Z t S - ~  C =  ;(t C t .  (20) 

Eq. (20) immediately gives the connection between coefficients and electronic 
densities in the two different bases: 

1- 1- 
C = S  2 C  t, C t = ( C t )  ¢ S  2 ,  (21) 

1 1 

P =  2 C C  t : S 2 P t  S ~ . (22) 
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The connections in Eqs. (21) and (22) are, of course, correct to the second order 
only, since the matr ix  C is obtained from the solutions of a Fock equation, where 
the Coulomb and exchange operators do not include more than second order terms 
in S. A Foek operator with these properties can be given the following form 

F =  T +  Z ( U ~ - n ~ J ~ ) +  ~ P ~ . J . ~ - K ,  (23) 

if we define the electron interaction operators as 

J~ = E 14> ~ (4 J, (24) 

7~z in Eqs. (24) and (25) are the Coulomb integrals in terms of the OA0's  X. 
There is another feature of the Pariser-Parr scheme which also has bearing 

upon its connection with the theoretical method, i.e. the determination of integral 
values by  semiempirical methods. We will not make any further comment on this 
question here. I t  should only be pointed out that  the underlying assumption for 
the presentation is tha t  the Slater orbitals Z ~ of Eqs. (3) and (t3) are the same. 

b) Population analysis 

The population analysis in the Pariser-Parr-Pople scheme is usually given in 
verms of atomic charges Pz,  and bond orders P,,,  i.e. the matr ix  elements of P in 
Eq. (22). I t  has been pointed out by P~ACOCK [15] that  these quantities do not 
give a direct description of the charge distribution in the molecule. PEACOC~ 
therefore suggests that  the Mulliken net atomic and overlap populations of Eqs. 
(7) and ( i l )  should be used to describe the distribution. These quantities are 
easily obtained from the P matr ix  by  the inverse of the transformation in Eq. (22). 

I t  has been pointed out many  times tha t  the OA0's  Z:~ are deloeMized, many- 
center orbitals and accordingly not so well adapted as the A0 ' s  Z~ to depict the 
electron distribution in the molecule. However, it has not been stressed so fre- 
quently tha t  tiffs delocalization will only appear in a rather formal way. In  fact, 
as discussed previously [3, 7], in the expression for Z, the coefficient of Z~ is larger 
than unity, inferring a concentration of the orbital around the center #. As an 
example, in the ease of benzene Eqs. (13) and (19) give 

X~ = ;l~ (l + a S~2) _ ½ S~e (X~ + Z~) + (a S~  -- ½ S~a ) (Zta + g~) + 0 (ca). (26) 

The overlap integrals between Z~ and Z~ are in this ease 

<Zi [Z~> -- 0.98, <Z~ [Z~> = 0A3,  <Zl l Z~> -- O.0i. (27) 

The corresponding AO values are: S n = t, ~12 --- 0 . 2 7 ,  813 - -  0.04. The Eqs. (26) 
and (27) illustrate the important  fact tha t  the orthogonalization procedure tends 
to localize the orbitals rather than  to delocalize them. Accordingly, the orthogonal- 
ized atomic orbitals are more localized than the ordinary orbitals. 

This local property of the OAO's indicate that  the use of the P matr ix  to 
depict the electron distribution should be reconsidered. Obviously, the quantities 
P ~  cannot be expected to correspond to the net atomic populations P , , ,  but 
rather to the gross atomic populations N~z. In  fact, from Eqs. (i0) and (22) we 
find 1 

N P s  + s ½ vs- ) (2s) 
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Introducing Eqs. (18) and (19) into (28) we obtain 

N =  P +  ~ e 2 (a~ P +  P ~ -  2 al Pas )  + 0 (ez). (29) 
Hence, 

P ~  = l ~ ,  + o (s~). (30) 

The atomic charges Pzs are thus equal to the gross atomic populations within the 
accuracy of the semiempirical method. The connection between bond orders and 
overlap populations is more involved. From Eqs. (22), (19) and ( i t )  we find 

P~. = P,,. - s,.., + o ( ~ ) ,  (31) 

n . .  = 2 P.~ s . .  - 2 s~.  + 0 ( ~ ) .  (32) 

The merits and disadvantages of the different possible definitions of overlap popu- 
lations and bond orders have been discussed in detail by M~ZLL~XEZ~ [10]. Useful, 
though somewhat different information may  be obtained from both the quantities 
considered here, P~. and us.. However, McW~z~r  [7] has shown that  the quanti- 
ties P~,. are int imately connected with bond energies. Furthermore, SKANCKE [19] 
has shown that  the relation between the bond orders P+,~ and bond distances Ru, 
is the same in the Pariser-Parr-Pople scheme as in the Hfickel scheme. Thus the P 
matr ix  seems to give at least as useful information within the semiempirieal 
scheme as the population quantities derived from tha pt  matrix. 

4. The ttiickel Method 

a) Population analysis 
The Hiickel method is often used without any explicit reference to an orbital 

basis. However, it seems to be appropriate to refer the method to orthogonalized 
atomic orbitals. I f  this is accepted it is possible to show [3] that  the Hfickel 
method is mainly equivalent to a first order t reatment  with respect to the overlap 
integral S. Hence, the coefficient matr ix  C and the density matr ix  P of Eq. (22) 
will not be quite the same in the Hfickel method as in the Pariser-Parr-Pople 
method. For simplicity, we will neglect this difference and use the same notations 
for both methods. 

b) The e[/ective Hamiltonian 

A more intricate question is how to define an effective one-electron Hamiltonian 
operator, H err, corresponding to the Foek operator of Eqs. (6) or (23). One answer 
to the question is the one given by I~UEDn?CS~G [17]. He stresses tha t  the topology 
of the molecule is the main important  thing, and the precise nature of H err a 
subordinate question. Although this may  be true, it can nevertheless be of interest 
from the interpretational point of view to look closer into the problem. McWEEsr  
[7] points out that  the connection between the tI/iekel and SCF one-electron 
operators m a y  be made in different ways, when the interest is focused on different 
observables. He suggests that  for the discussion of one-electron properties, the 
Fock operator with some average bond order values may  be considered as the 
effective Hamiltonian. For other observables, where the total energy of the system 
is of importance, e.g. for the calculation of deloealization energies, the connection 
must  be made differently. A well-known feature of the Hfickel method is tha t  the 
total energy is obtained as the sum over the orbital energies. I t  is also well-known 
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tha t  this is no longer true when the interelectronic repulsion is considered expli- 
eitely. Thus, it is suggestive to start  the search for an operator with the properties, 
a t t r ibuted to H eet, f rom the expression for the total  energy. 

In  a method  with explicit consideration of the electronic repulsion, the total  
energy of the ~-electron system can be writ ten 

E = = Tr P (H core ÷ ½ G ) .  (33) 

Start ing from this Eq. PA~R [13], and more recently M c W ~ N ¥  [7], have suggested 
tha t  (H e°re @ ~ G) l~lay be interpreted as the effective Hamil tonian  in cases, 
where the addi t ivi ty  of  energies is important .  However,  as pointed out by  POPLE 
[16], RUED~BERG [17], and others [1, 2] the repulsion between the positively 
charged core atoms, E repuls, must  be added to E~. Only this sum, which we call 
E total, can be used for a meaningful  comparison between systems with different 
cores, as is done e.g. in the calculation of delocalization energies. 

As discussed e.g. by  D~L R~ and PARR [1] it is convenient to express the 
repulsive energy in the following way 

~ e ~  = ½ X ~ ~.  ~,, ~,~. (34) 

After some rearrangements  (cf. the Appendix) the total  energy can be writ ten : 

E t°tal =: E ~ q- E repuls = Tr P H eft . (35) 

The expression for the one-electron operator H etf in Eq. (35) is 

Hett = T ÷ ~ (U.,, Jr ½ Q Q~ J~,~/P) - ½ n 2 y /P  - ½ K ,  (36) 
g 

where we have introduced the notat ion Q~, for the net  atomic charge 

Q, = n~ - P , ,  . (37) 

The operators in Eq. (36), which have not  been defined previously, are local, 
one-center operators. Using a similar representat ion as in Eqs. (24) and (25) we 
have 

;t 

Q Q~ J ~ / P  = ~ [ ,t} Q~ @. y~ / (P~)  (,~ i • (39) 

A comparison of Eqs. (23) and (36) indicates tha t  in spite of the obvious 
similarities there is an impor tan t  difference between the operators F and H err. To 
clarify this point  it m a y  be instructive to write down the diagonal and the off- 
diagonal matr ix  elements. For  this purpose we introduce the notat ions : 

H neutr = T-~- E V u ,  (40) 

w~ = ( ~ / H  -eut~ - n,~ J,,, i ~ ) -  (41) 
Then we have 

F . .  = W~ + ½ P . .  ~,,~, - E Q~ ~ . ,  (42) 

e f t  H~,, -- W~ + ~ Pf,, y , ,  q- ~- Q/(P~,#) ~ Q~ y,~#, (43) 

F,. = H neutr  - -  ½ P , ,  y # , ,  ~ ¢ v (44) Iz.V 

H ~  = ~,t,, . (45) 
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Eqs. (44) and (45) show that  the off-diagonal parts of F and H err are rather 
similar, although the absolute values of H elf __~ are somewhat smaller than those of 
Fz~. As discussed previously [3], the matrix elements _=,~H n~u~r are independent of 
the surrounding and will vanish for pairs of non-neighbors, when S a terms are 
neglected. However, the second term will not vanish in this approximation. 
Keeping this term in Eq. (44) for non-neighbors leads to the method, suggested by 
0RLOFF and FITTS [11]. 

In  the diagonal elements, Eqs. (42) and (43), the only term of non-local charae- 
ter is the sum over x. For alternant hydrocarbons this sum will always vanish 
(all Q = 0). On the other hand it can give appreciable contributions to F ~  in the 
case of strongly polar compounds. In  the case of Eq. (43), however, the sum is 
multiplied by the net charge Q~. Accordingly, the non-local contribution to H ~  

Table 1. Numerical values in eV o/the diagonal matrix 
elements o/ the Foc]c operator, Eq. (42), and the effective 
Hamiltonian, Eq. (43),/or some typical cases. The non- 

local contributions are the numbers in parentheses 

Atom ~ i% S;~ 

Benzene 
C -3.519 (0) -6.460 (0) 

Aniline 
N -9.496 (+0.568) -17.389 (-0.017) 
C 1 -3.556 (+0.108) - 6.533 (-0.001) 
C~ -3.602 (-0.502) -6.267 (-0.017) 
Ca -3.131 (+0.524) - 6.533 (-0.006) 
C 4 -3.349 (-0.069) - 6.341 (-0.001) 

p-Benzoquinone 
0 -6.081 (-2.035) - 9.916 (-0.178) 
C 1 -3.166 (+t.430) -7.158 (-0.160) 
C 2 -4.194 (-0.59t) -6.497 (+0.004) 

will be an order of magnitude smaller than in the case of Fss. In consequence of 
Eq. (36), an electron in the immediate vicinity of an atom will "see" a potential 
well of considerable depth at this very atom but the rest of the molecule as essen- 
tially neutral. To illustrate this point the numerical values for some typical eases 
arc given in Tab. 1. The numbers in parentheses are the non-local parts of the matrix 
elements. Since these parts are of the same magnitude as those terms, which are 
neglected anyway in the S 2 approximation, the success of the Itiickel method 
becomes understandable. 

c) E//eetive bonding energy 

As mentioned above, the quantity E t°tal of Eq. (35) is more suitable than E~ 
of Eq. (33) for estimates of e.g. the delocahzation energy. This is illustrated by the 
energy values for ethylene and benzene, listed in Tab. 2. Obviously, the difference 
between the values of E" for the two systems does not give any immediate infor- 
mation. On the other hand, for a comparison of two systems with different num- 
bers of~-electrons it is found that  neither E ~ nor E t°tal are very useful quantities 

24* 
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Table 2. Numerical values in eV o/the di//erent energy quantities, E ~ o[ Eg. (33), E ~t~ o[ Eg. 
(35), and Eb°nal'~ of Eq. (48% The di]/erent terms o/ Eq. (d8) are also given separately 

Energy  t e rm 3 Ethylene  Benzene Aniline p-Benzoquinone 

E n -90.17t -163.248 -259.596 -261.773 
E tot~ -66.407 - 68.476 -103.107 -10t.016 
Ebo'ai~ -~0.006 - t2.075 - t2.838 - 13.755 
- E Q~ W~ 0 0 + 1.724 - 2.552 

E [~ P~ 1) +17.643 t7.643 16.645 + 29.147 ~ ~ a  - na + 7aa + + 
tt 

E * Q~Q~7w 0 0 - 0.083 - 0.676 
/z, r e /*  

E P~H~ eut~ -15.767 - 18.530 - t9.613 - 23.507 
#,  v #  l~ 
_ 5", -~ p~y#~ -11.882 - 11A88 - 11.511 - 16A66 

r~, v # g  

[eft the values for benzene and aniline of Tab. 2]. For  such a comparison i t  is more 
informat ive to consider the quant i ty ,  which I~UEDENBEaG [17] calls "effective 
bonding energy of 7~-electrons with respect to the carbon valence s tate" ,  just  
changing the last three words to "atomic valence states".  According to the defini- 
t ion of RUEDE~BEUG [17], this quant i ty ,  which we will denote Eb°nding, is 

E b°nding = E t°tal - E at°ms . (46} 

The most dubious quan t i ty  in  Eq. (46) is perhaps E at°ms, since the definition of the 
valence state is an unclear point  [18]. Although aware of this fact, we will for the 
present  purpose simply write 

E at°ms = ~ [n~ W~-~- (n# - 1)~,::,] . (47) 

After insert ion of Eqs. (43), (45) and  (47), Eq. (46) reads 

Ebo.d ng = E { - Q,, + (¼ - + l )  + 

~- ½ Qf,~ ~ Q,, 76,,, ÷ Z P~,, H~n~ eutr - ~ ~ P ~  ?t~} • (48) 

Eq. (48) is an extension to a rb i t ra ry  :~-systems of RUEDE~BE~G'S expression for 
the x-electron b inding in hydrocarbons [17]. RuEnENBE~C has pointed out the 
importance of the short-range forces due to the operator Hneutr. He has also 

i l lustrated this fact by  numerica l  values for benzene. Nevertheless, it  might  be 
informative to look upon the different terms of Eq. (48) for some heteronuelear  
molecules as well. Moreover, both  the present  grouping of the terms and the 
computa t ional  method  (semi-empirical) are different from those of RUEDE~BE~C. 
Therefore, benzene and  ethylene are also included in  Tab. 2. The first sum in 
Eb°nding arises from the transfer  of electrons from one kind of atoms to another,  
in  the ease of aniline from the N a tom to C atoms and in  p-benzoquinone from C 
atoms to 0 atoms. This is a sizeable term, repulsive in  the lone pair ease, bu t  
otherwise at tractive.  The next  sum represents the increase in  electronic repulsion 
due to pair ing of the unpai red  valence state electrons. This is always a large term. 
However,  according to SrLVERSTONE'S definit ion of the valence state [18], the 
m a i n  par t  of this t e rm should be assigned to the atomic valence state energy. The 
par t  left will be of a size similar to the first t e rm of E b°nding bu t  of opposite sign. 
The th i rd  term is the cont r ibut ion  from the electrostatic in terac t ion  between the 
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final, net charges. This term is attractive, but an order of magnitude smaller than 
any other term. The forth term is due to the short-range forces. It  is always 
attractive and considerable. The last term originates from the exchange operator 
K and represents long-range forces. It  is also always attractive. 

Summing up, we find that the ~-eleetron bonding is partly due to short-range 
forces from the neutral framework potential, partly to long-range, exchange/orces. In 
the examples, given here, the short-range part is somewhat larger than the long- 
range part, but they are of comparable magnitudes. The net charges will only 
modify this picture slightly. 
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Using Eq. (37), Eq. 

Etotal 

+ 

Now it is easily seen 
Eq. (A 3). 

Appendix 
The expression for E t°tal of Eqs. (35) and (36) can be derived as follows. Since 

be v z A 

= Z Pbebe {1 p,,be ybebe + ~ Pa,, y~be} -- ~ ~ ½ P~, rbe~, (A i) 
be a¢be be ~¢,u 

we have by Eqs. (33), (34), (40) and (41): 

E= + Erep uls = E total 

= ~ Pbebe {W~ ÷ ¼ Pbebe Ybet~ -- ½ ~ (n,, -- Pv,)?be~}÷ (A 2) 
be v¢/~ 

E {~ Ybe, (nbe n, - P , ,  n~) + P,~, (H "eutr -- ~ Pbev )]bev} . x - - / z u  " 

be uCbe 

(A 2) can be written 

{Pbe, + pbebe  bebe) + 1 Qbe + 
be ~¢be 

that introduction of Eqs. (43) and (45) into Eq. (35) will give 
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