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Connections are given between the theoretical m-electron theory in an ordinary atomie
orbital basis and semiempirical theories in an orthogonalized basis, neglecting terms of third
order. An expression is derived for a one-electron operator with the properties, usually assigned
to the effective Hamiltonian of the Hiickel method. The non-local part of this operator is
shown to give only small contributions also for heteromolecules and lone pairs. Not only
short-range forces but also long-range forces, originating from the exchange operator, contri-
bute essentially to the effective bonding. Numerical applications have been made e.g. to aniline
and p-benzoquinone.

Es wird der Zusammenhang zwischen einer reinen z-Elektronentheorie mit Atomeigen-
funktionen als Basis einerseits und semiempirischen Theorien mit orthogonaler Basis anderer-
seits aufgezeigt, wobei Glieder dritter Ordnung in Uberlappungsintegralen vernachlissigt
werden. Dabei 1484 sich ein Einelektronenoperator mit den Eigenschaften, die fiir gewohnlich
fiir den effektiven Hamiltonoperator der Hiickel-Theorie postuliert werden, finden. Sein
nichtlokaler Anteil liefert nur geringe Beitréige fiir Heteroatome und einsame Elektronenpaare.
Fiir die Bindung sind neben den Kréften des Austauschoperators mit kurzer Reichweite auch
weitreichende von Bedeutung. Numerische Werte fiir Anilin und p-Benzochinon werden gege-
ben.

Des connections entre la méthode théorique des électrons = sur base d’orbitales atomiques
ordinaires, et des théories semiempiriques sur une base orthogonalisée sont données, en négli-
geant les termes du troisiéme ordre. On dérive une expression pour un opérateur monoélectro-
nique ayant les propriétés attribuées usuellement & I'opérateur hamiltonien effectif de la mé-
thode de Hiickel. On montre que la partie non-locale de cet opérateur ne donne que de contri-
butions petites, méme pour les hétéroatomes et les paires libres d’électrons. Non seulement les
forces & portée courte, mais aussi celles & portée longue dérivant de Vopérateur d’échange,
contribuent essentiellement & la liaison effective. Des applications numériques, p.e. pour
Paniline et le p-benzoquinone, ont été effectuées.

I. Introduetion and Summary

For theoretical studies of m-electron systems it is possible to choose between
several more or less semiempirical procedures. The following three will be con-
sidered here: (i) the theoretical self-consistent-field (SCF) linear combination of
atomic orbitals (LCAO) method, (ii) the Pariser-Parr-Pople method, (iii) the Hiickel
method. The connections between these methods has been studied previously
many times. Among the more recent articles, dealing with these problems, are the
investigations by RtepENBERG [17], DEL RE and Parr [I], McWEgENY [7] and
Fiscuer-Hyarmars [3]. Although, so far, many points have been discussed and
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clarified, several obscurities still remain, especially for the general case, where
heteroatoms and lone pairs are present. The main source of these difficulties seems
to be that no operator with the properties, usually assigned to the effective
Hamiltonian of the Hiickel method, has yet been deduced. Since this problem is
essential for the understanding of the success of the Hiickel method, it will be
treated in the present paper together with some related questions.

The considerations are based on the author’s previous analysis of the zero
differential overlap (ZDO) approximation by means of an expansion method [3].
There it was demonstrated that the Pariser-Parr-Pople method is equivalent to a
systematic inclusion of second order terms of the overlap integral .S, but neglect of
higher order terms. Furthermore, the Hiickel method was shown to be essentially
equivalent to a first order theory with respect to S. These results are utilized in the
present study. After a brief review of the theoretical method in Section 2, the
0AO basis in the second order approximation is introduced in Section 3. In this
approximation, the Fock operator F takes the form of Eq. (23) with the Coulomb
and exchange operators defined in Eqs. (24) and (25). Then, the connection be-
tween the Mulliken population analysis and the concepts of charge and bond
order are discussed. It is pointed out that the OAQ’s are more localized than the
AO’s [cf. Egs. (26), (27)]. Thus, charge and bond order are meaningful concepts
in the OAO basis. It is shown that the gross atomic populations N,, in the AQ
basis and the atomic charges P,, in the OAO basis are identical in the second
order approximation [Eq. (30)]. A relation between overlap populations n,, and
bond orders P, is also given [Eq. (32)]. In Section 4 an expression is derived for
an effective one-electron Hamiltonian operator He” [Eq. (36)], which can be
interpreted as the Hiickel Hamiltonian. This operator has the property that the
sum over its eigenvalues will give the total energy of the system, .e. the sum of
the z-electron energy E” and the core repulsion energy Areruls, of. Hq. (35). A
comparison of the operators ¥ and. HeIf shows that the non-local contributions to
Hett will be an order of magnitude smaller than to F [c¢f. Tab. 1]. Hence, an elec-
tron in the potential from Heff and close to a specific atom “sees” a potential well
of substantial depth at this very atom but the rest of the molecule as essentially
neutral. Finally, the concept of effective bonding energy, introduced by RuepEN-
BERG [17], is discussed and extended to heteronuclear molecules including lone
pairs [Eq. (48)]. The importance of short-range forces, stressed by RUEDENBERG,
is confirmed. However, it is shown that also long-range interaction, originating
from the exchange operator, is of considerable importance [ef. Tab. 2].

2. The Theoretical Method

For simplicity the presentation here will be confined to closed-shell systems
with 2n m-electrons. The n-electronic part of the Hamiltonian is

H=73 Heore(s) 4+ S Afrsy. (1)
s=1 s>u

The eigenfunction of this operator is supposed to be an antisymmetrized product

of molecular orbitals composed of atomic orbitals y/, (s). The AO y, is a Slater-type

atomie 2pz orbital centered on atom u. Since we will have different basic orbitals in

the different methods the superscript ¢ is introduced to distinguish the theoretical
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method. Assuming that there is just one AO y on each center u we can write

all atoms
Heoret = 7' 5 (U, —m, JL,). {2)
%=1
In Eq. (2) T is the kinetic energy, U, is the potential from the neutral atom and =,
is the number of s-electrons contributed by atom 2 (n, =0, 1 or 2). J!_is the
ordinary Coulomb operator, defined in terms of the AQ’s ¥,
In the LCAO approximation the space part of the ¢th molecular orbital is

@i = Z;(ZOL@~XtC$, (3)
W

where m is the number of atoms, contributing s-electrons. %! is a row matrix and
C! a column matrix. Collecting all the n doubly filled orbitals into a row matrix
we have
P =xC, (4)
where C? is a rectangular m x n matrix. Introducing the orbital representation
of the density matrix
Pt =2 Ct (C))f (5)
we can write the Fock operator of the one-electron problem
= Here t G = T4 3 (U= T+ 33 P U= B EG) . ()

where K, is the exchange operator with the usual definition.

The electronic density, obtained after solution of the self-consistent-field
problem, can be analysed according to the scheme developed by MuLLikEN [10].
The net atomic populations n,, are given by the diagonal elements of the density
matrix in Eq. (5):

= P, (7)
According to Mulliken’s definition the gross atomle populations N, are
HM Z P w > (3)
where
=1 rdr (9)

As pointed out by GrLapxEY {4] the gross atomic populations are the diagonal
elements of a matrix N
N=3(P'S+ SP). (10)

The off-diagonal elements of this matrix are bond-order-like quantities [4]. How-
ever, MULLIKEN [10] has pointed out that the overlap populations n,,

n,l,,:2waS,,,,,, nFEY, (11)

may have certain merits for the description of bonding properties in comparison
to bond-order like quantities.

3. The Pariser-Parr-Pople Method

a) The Fock operator in an OAO basis

As is well known, the full SCF-LCAO-MO treatment can be simplified in the
way suggested by PARISER and Parr [12] and PorLE [16]. These simplifications
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can be formally described by the assumption of zero differential overlap. It has
also been pointed out many times that the correct interpretation of this simplifica-
tion can be made along two different lines. The one includes a regrouping of terms
and the introduction of the Mulliken approximation [§]in the complete MO expres-
sion for the electronic repulsion. This interpretation was first given by MuLLIKEN
[9]. According to the other line, first pointed out by LOwpIN [6], a change from
the ordinary AQ basis to an orthogonalized AO basis will lead to the simplifica-
tions suggested by the ZDO formalism. Both these interpretations are discussed
in detail by Parr [14], where further references are given. The approximations
inherent in the OAO interpretation have recently been analyzed by the present
author by an expansion method [3]. As pointed out above, the Pariser-Parr-Pople
scheme was shown to be equivalent to a second order treatment in terms of S,,,14,
where the atome y and y + 1 are nearest neighbors. This implies that the scheme
can only be expected to give reasonable results when

Spy 1 <05, (12)

This condition is fulfilled for most sz-electron systems but in general not for o-
electron systems.
According to LOWDIN [5] the orthogonalization transformation can be written

1
y—yt S E, (13)

where y is the OAO set. Then the transformation of any one-electron operator M
is given by

(S

1 -
M=S§S *MS %, (14)

where M is the representation in the OAO basis. In the second order approxima-
tion we can put [3]
S=1+ca +ec,+ 0(). (15)

The matrices a; and ¢, are the overlap matrices between nearest and next-nearest
neighbors respectively:

(lu|8a'1lv):SMs.‘l_laﬂ“lﬂ'_’_Sﬂ’ﬁ¢+léﬂ+ls’/’ (16)
(qué‘z CZI’V):Sﬂ,ﬂfz(sﬂ—g,p‘}‘S,u,u-i—ga,u—l-z,u' (17)
Then
1 .
S?=1+3eca,+82Fc,—5a))+0(d), (18)
1
S Z=1—3ca,—(3ec,—2ad)+ 0 (). (19)
In the OAO basis the MO’s are
1
g=%C=y8S *C=yCt. (20)

Eq. (20) immediately gives the connection between coefficients and electronic
densities in the two different bases:
1 1
C=S8*¢C, Cf=(Cc)t 8%, (21)

1
2

1
P-2CCt=S°P'S (22)
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The connections in KEqs. (21) and (22) are, of course, correct to the second order
only, since the matrix C is obtained from the solutions of a Fock equation, where
the Coulomb and exchange operators do not include more than second order terms
in 8. A Fock operator with these properties can be given the following form

F=T+ 2 U, =nmdu)+ 2 Pt — K, (23)

if we define the electron interaction operators as
S = ; | 2>y <A | (24)
Kz%ggéw Py A (25)

v in Egs. (24) and (25) are the Coulomb integrals in terms of the OAO’s .
There is another feature of the Pariser-Parr scheme which also has bearing
upon its connection with the theoretical method, ¢.e. the determination of integral
values by semiempirical methods. We will not make any further comment on this
question here. It should only be pointed out that the underlying assumption for
the presentation is that the Slater orbitals y* of E¢s. (3) and (13) are the same.

b) Population analysis

The population analysis in the Pariser-Parr-Pople scheme is usually given in
terms of atomic charges P,, and bond orders P,,, i.e. the matrix elements of P in
Eq. (22). It has been pointed out by Pracock [15] that these quantities do not
give a direct description of the charge distribution in the molecule. PrACOCK
therefore suggests that the Mulliken net atomic and overlap populations of Eqs.
(7) and (11) should be used to describe the distribution. These quantities are
easily obtained from the P matrix by the inverse of the transformation in Eq. (22).

It has been pointed out many times that the OAQ’s y, are delocalized, many-
center orbitals and accordingly not so well adapted as the AO’s y, to depict the
electron distribution in the molecule. However, it has not been stressed so fre-
quently that this delocalization will only appear in a rather formal way. In fact,
as discussed previously [3, 7], in the expression for y, the coefficient of y/, is larger
than unity, inferring a concentration of the orbital around the center u. As an
example, in the case of benzene Eqs. (13) and (19) give

2= (85 — 58 (a+ 8+ B Sh— 2 S b+ +0 (). (26)
The overlap integrals between y, and 4/, are in this case
i x> =098, b | =013, b | a> = 0.01. (27)

The corresponding AO values are: Sy; = 1, S;p = 0.27, §;3 = 0.04. The Eqgs. (26)
and (27) illustrate the important fact that the orthogonalization procedure tends
to localize the orbitals rather than to delocalize them. Accordingly, the orthogonal-
ized atomic orbitals are more localized than the ordinary orbitals.

This local property of the OAO’s indicate that the use of the P matrix to
depict the electron distribution should be reconsidered. Obviously, the quantities
P,, cannot be expected to correspond to the net atomic populations P,,, but
rather to the gross atomic populations N,,. In fact, from Egs. (10) and (22) we

find 1 1 1 1
N=%<S pS*+8°PS 2). (28)
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Introducing Egs. (18) and (19) into (28) we obtain

N=P+i5&(@P+Pd~2aPa)+0(H). (29)

Hence,
P =N, + O(@3). (30)
The atomic charges P,, are thus equal to the gross atomic populations within the

accuracy of the semiempirical method. The connection between bond orders and
overlap populations is more involved. From Eqgs. (22), (19) and (11) we find

P =Py —8,,+ 0, (31)

My =2 Py Sy — 282, + 0 (%) . (32)
The merits and disadvantages of the different possible definitions of overlap popu-
lations and bond orders have been discussed in detail by MuLLIREN [10]. Useful,
though somewhat different information may be obtained from both the quantities
considered here, P, and n,,. However, McWrENY [7] has shown that the quanti-
ties P,, are intimately connected with bond energies. Furthermore, SkaNckz [719)
has shown that the relation between the bond orders P,, and bond distances &,
is the same in the Pariser-Parr-Pople scheme as in the Hiickel scheme. Thus the P

matrix seems to give at least as useful information within the semiempirical
scheme as the population quantities derived from the P* matrix.

4. The Hiickel Method

a) Population analysis
The Hiickel method is often used without any explicit reference to an orbital
basis. However, it seems to be appropriate to refer the method to orthogonalized
atomic orbitals. If this is accepted it is possible to show [3] that the Hiickel
method is mainly equivalent to a first order treatment with respect to the overlap
integral S. Hence, the coefficient matrix € and the density matrix P of Eq. (22)
will not be quite the same in the Hiickel method as in the Pariser-Parr-Pople

method. For simplicity, we will neglect this difference and use the same notations
for both methods.

b) The effective Hamiltonian

A more intricate question is how to define an effective one-electron Hamiltonian
operator, Hel, corresponding to the Fock operator of Egs. (6) or (23). One answer
to the question is the one given by RUEDENBERG [17]. He stresses that the topology
of the molecule is the main important thing, and the precise nature of Helf g
subordinate question. Although this may be true, it can nevertheless be of interest
from the interpretational point of view to look closer into the problem. MoWEENY
[7] points out that the connection between the Hiickel and SCF one-electron
operators may be made in different ways, when the interest is focused on different
observables. He suggests that for the discussion of one-electron properties, the
Fock operator with some average bond order values may be considered as the
effective Hamiltonian. For other observables, where the total energy of the system
is of importance, e.g. for the calculation of delocalization energies, the connection
must be made differently. A well-known feature of the Hiickel method is that the
total energy is obtained as the sum over the orbital energies. It is also well-known

Theoret. chim. Acta (Berl.) Vol. 4 24
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that this is no longer true when the interelectronic repulsion is considered expli-
citely. Thus, it is suggestive to start the search for an operator with the properties,
attributed to Heff, from the expression for the total energy.
In a method with explicit consideration of the electronic repulsion, the total
energy of the s-electron system can be written
E* =Ty P (H™e + 3 G). (33)
Starting from this Eq. Parr [13], and more recently McWrENY [7], have suggested
that (Hcore - } G) may be interpreted as the effective Hamiltonian in cases,
where the additivity of energies is important. However, as pointed out by PopLE
[16], RuepENBERG [I7], and others [, 2] the repulsion between the positively
charged core atoms, Erepuls, must be added to £=. Only this sum, which we call
Etotal can be used for a meaningful comparison between systems with different
cores, as is done e.g. in the calculation of delocalization energies.
As discussed e.g. by DEL RE and Parr [I] it is convenient to express the
repulsive energy in the following way
Brewis — 35 S n,m, (34)
uovEp

After some rearrangements (cf. the Appendix) the total energy can be written:
Ftotal —. " L Frepuls — Ty p Feif (35)
The expression for the one-electron operator Heff in Eq. (35) is
Het =T+ 5 (Us+ 3Q@uJudP) — 2 y/P — 1 K, (36)

where we have introduced the notation @, for the net atomic charge
Qu=mny— P,y . (37)
The operators in Eq. (36), which have not been defined previously, are local,

one-center operators. Using a similar representation as in Eqs. (24) and (25) we
have

ny[P = ; 2> mynf(Pu) <A | (38)

Q Qn J‘AH/P == ,12 \ 2-> Qﬂ. Qx )/%A/(PM) <)- i . (39)

A comparison of Egs. (23) and (36) indicates that in spite of the obvious
similarities there is an important difference between the operators F and Hetf. To
clarify this point it may be instructive to write down the diagonal and the off-
diagonal matrix elements. For this purpose we introduce the notations:

Hueutr — 774 z U, (40)
Wi =<u [ Hveutr — oy J ., l/‘> . (41)
Then we have
F‘uﬂ - W:LL + % Py,u ')/,uﬂ - éQu Vny, s (42)
HFEU
Hﬁf,f - WLL + 4% P/m You 1 % QH/(P.“-N) ;Qx Vo 5 43)
HE
F[w - HEEU.U‘ - % P/.w V,w; /.L ‘7é v, (44)

e = Hpeur i Puvm nEY. (45)

My
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Eqgs. (44) and (45) show that the off-diagonal parts of F and Hef are rather
similar, although the absolute values of HeT are somewhat smaller than those of
F,,. As discussed previously [3], the matrix elements H2"" are independent of
the surrounding and will vanish for pairs of non-neighbors, when §% terms are
neglected. However, the second term will not vanish in this approximation.
Keeping this term in Eq. (44) for non-neighbors leads to the method, suggested by
Orrorr and Frrrs [17].

In the diagonal elements, Hqs. (42) and (43), the only term of non-local charac-
ter is the sum over x. For alternant hydrocarbons this sum will always vanish
(all @ = 0). On the other hand it can give appreciable contributions to ¥, in the
case of strongly polar compounds. In the case of Eq. (43), however, the sum is
multiplied by the net charge @,. Accordingly, the non-local contribution to HeT

up

Table 1. Numerical values in eV of the diagonal matrix

elements of the Fock operator, Eq. (42), and the effective

Hamiltonian, Eq. (43), for some typical cases. The non-
local contributions are the numbers in parentheses

Atom u Fy,u H;fli
Benzene
C -3.519 (0) — 6.460 (0)
Aniline
N ~-9.496 (+0.568) -17.389 (-0.017)
C, —3.556 (+0.108) - 6.533 (-0.001)
C, -3.602 (-0.502) — 6.267 (-0.017)
C,q -3.131 (+0.524) - 6.533 (—-0.006)
C, -3.349 (-0.069) - 6.341 (-0.001)
p-Benzoquinone

0 —-6.081 (-2.035) — 9.916 (-0.178)
C —-3.166 (+1.430) - 7.158 (-0.160)
C, —4.194 (-0.591) - 6.497 (+0.004)

will be an order of magnitude smaller than in the case of F,,. In consequence of
Eq. (36), an electron in the immediate vicinity of an atom will “see” a potential
well of considerable depth at this very atom but the rest of the molecule as essen-
tially neutral. To illustrate this point the numerical values for some typical cases
are given in Tab. 1. The numbers in parentheses are the non-local parts of the matrix
elements. Since these parts are of the same magnitude as those terms, which are
neglected anyway in the 5% approximation, the success of the Hiickel method
becomes understandable.

¢) Effective bonding energy

As mentioned above, the quantity Etotal of Eq. (35) is more suitable than #=~
of Eq. (33) for estimates of e.g. the delocalization energy. This is illustrated by the
energy values for ethylene and benzene, listed in Tab. 2. Obviously, the difference
between the values of £ for the two systems does not give any immediate infor-
mation. On the other hand, for a comparison of two systems with different num-
bers of z-electrons it is found that neither £” nor Etotal are very useful quantities

24%*
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Table 2. Numerical values in oV of the different energy quantities, B of Hg. (33), Bl of Eq.
(35), and Evonding of Eq. (48). The different terms of Eq. (48) are also given separately

Energy term 3 Ethylene Benzene Aniline p-Benzoguinone
B -90.171 ~163.248 ~259.596 —261.773
Ftotal —66.407 — 68.476 ~103.107 -101.016
Eponding -10.006 - 12.075 ~ 12.838 — 13.755
- 50 Wy 0 0 + 1.724 - 2.552
“
TP, - ny 1)y +17.643 + 17.643 + 16.845 + 29147
Y
T 1Qu@w 0 0 —~ 0.083 — 0.676
vEY
X Pu Hp™ -15.767 — 18.530 -~ 19.613 — 23.507
 VFE Y
-5 LPvu —11.882 ~ 11188 115U - 16.166
vl

[ef. the values for benzene and aniline of Tab. 2]. For such a comparison it is more
informative to consider the quantity, which RurpexBERG [17] calls “‘effective
bonding energy of m-electrons with respect to the carbon valence state”, just
changing the last three words to “atomic valence states”. According to the defini-
tion of RuEDENBERG [17], this quantity, which we will denote Fbonding g

JFoonding . fltotal __ Fatoms | (46)

The most dubious quantity in Eq. (46) is perhaps Eatoms, since the definition of the
valence state is an unclear point [18]. Although aware of this fact, we will for the
present purpose simply write

Eatoms — 5 [n, W+ (n, — 1)yl - (47)
After insertion of Eqgs. (43), (45) and (47), Eq. (46) reads
Hbonding - Z{ - Q,u Wz’ + (% me — + 1) Veu -+

n

F 50 2 Qv+ L P HM — 3 3 Py} (48)

viEp v u vEp

Eq. (48) is an extension to arbitrary m-systems of RUEDENBERG’s expression for
the m-electron binding in hydrocarbons [17]. RUEDENBERG has pointed out the
importance of the short-range forces due to the operator Hnewtr, He has also
llustrated this fact by numerical values for benzene. Nevertheless, it might be
informative to look upon the different terms of Eq. (48) for some heteronuclear
molecules as well. Moreover, both the present grouping of the terms and the
computational method (semi-empirical) are different from those of RUEDENBERG.
Therefore, benzene and ethylene are also included in Tab. 2. The first sum in
Eponding arises from the transfer of electrons from one kind of atoms to another,
in the case of aniline from the N atom to C atoms and in p-benzoquinone from C
atoms to O atoms. This is a sizeable term, repulsive in the lone pair case, but
otherwise attractive. The next sum represents the increase in electronic repulsion
due to pairing of the unpaired valence state electrons. This is always a large term.
However, according to SILVERSTONE’s definition of the valence state [18], the
main part of this term should be assigned to the atomic valence state energy. The
part left will be of a size similar to the first term of Fvonding hut of opposite sign.
The third term is the contribution from the electrostatic interaction between the
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final, net charges. This term is attractive, but an order of magnitude smaller than
any other term. The forth term is due to the short-range forces. It is always
attractive and considerable. The last term originates from the exchange operator
K and represents long-range forces. It is also always attractive.

Summing up, we find that the m-electron bonding is partly due to shori-range
forces from the neutral framework potential, parily to long-range, exchange forces. In
the examples, given here, the short-range part is somewhat larger than the long-
range part, but they are of comparable magnitudes. The net charges will only
modify this picture slightly.
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Appendix
The expression for Ftotal of KEqs. (35) and (36) can be derived as follows. Since

TrPG= ZZPIW Z;P%Z(quaxlauu"%ymral,uam)
uo» )

:%Puu{%PﬂuVﬂM*"zﬂpmyw}*ZZ%P;%»VW’ (A1)

BvER

we have by Eqgs. (33), (34), (40) and (41):
En 4 Erepuls — Jtotal

:ZPHM{WZ_}_%PM&)/H#_%g(nv_PW)y.m’}_!— (A2)
u rEL
+ ;p%{% ')},uv (ny ny — P_u,u 7’1/,,) + P/w (Hzfutr - %; P,m/ V;w} .

Using Eq. (37), Eq. (A 2) can be written
Etotal = Z {Pu.u (Wﬁ + % P yun) + z Qu Z @ 'J’/w}"l‘
2 v

+ 2 2 Py (HM — 3 Puyy) - (A3)
HvFp
Now it is easily seen that introduction of Eqgs. (43) and (45) into Eq. (35) will give
Eq. (A 3).
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